Acta. Cryst. (1948). 1, 150

The Crystal Structure of 2-2'-dichlorobenzidine (Cl. C₆H₃. NH₂)₂

BY D. L. SMARE

Physics Department, College of Technology, Manchester 1, England

(Received 27 February 1948)

Standard single crystal methods show that the unit cell of $2\cdot 2'$ -dichlorobenzidine is orthorhombic, with a, b, c translations $7\cdot51$, $15\cdot20$, $10\cdot40$ A. respectively; the cell contains four molecules and has space group *Pnca*. The atomic co-ordinates are deduced from two-dimensional Fourier syntheses of electron density projected on (100) and (001). The structure is racemic, the molecules showing a tendency to adopt the *cis*-configuration; steric hindrance, however, necessitates an angle of 72° between the planes of the two rings. The diphenyl link is $1\cdot53$ A. and the C-C bonds are alternately long and short with mean values $1\cdot45$ and $1\cdot30$ A. respectively.

The work described is a contribution to a survey of a number of substituted diphenyls; a preliminary account of the survey has been given by Hargreaves & Taylor (1941).

Investigation of the structure

2-2'-dichlorobenzidine

$$H_2$$
 H_2 H_2

crystallizes readily from aqueous alcohol in elongated hexagonal plates of a mauve-brown colour. The crystals are moderately hard and, under a needle, fracture crisply with an imperfect cleavage perpendicular to the longer edges.

Oscillation and rotation photographs obtained with $\operatorname{Cu} K\alpha$ (filtered) radiation show that the lattice is orthorhombic. The lattice translations are

a (parallel to the longer edge of the plate) = 7.51 A.,b (normal to the plate)c= 15.20 A.,c= 10.40 A.,

with a possible error of $0.3^{\circ}{}_{0}^{\prime}$ in each case.

The molecular weight of the compound is 253; with four molecules in the unit cell, the calculated density is 1.41_{2} g.cm⁻³ (measured 1.41_{6} g.cm⁻³).

Absent spectra determine the space group to be (uniquely) $Pnca-D_{2h}^{14}$; the four molecules in the unit cell must therefore occupy special positions, since the general positions for Pnca require eightfold repetition. The centre of a molecule may be placed either at a symmetry centre or on a digonal axis. Simple tests of the packing of permitted arrangements and comparison of visually estimated intensities with the calculated values indicate clearly that the probable structure is one in which molecules having an approximately *cis*configuration lie on digonal axes. A true *cis*-configuration cannot be attained on account of the steric hindrance of the two chlorine atoms; calculation assuming normal van der Waals distances shows that each ring must be rotated approximately 36° away from the *cis*-planar position.

The trial structure suggested that good resolution would be obtained in projections parallel to [100] and [001] respectively. Reflexions of type 0kl were recorded on three Weissenberg photographs with different exposure times (Cu Kx radiation); a corresponding set recorded reflexions of type hk0. The intensities of these reflexions were measured with an integrating photometer, similar to that described by Robinson (1933), with the exception of certain very weak reflexions the intensities of which were estimated visually. The linear absorption coefficient is 46.7 cm.⁻¹: absorption corrections for all reflexions were determined by the method described by Albrecht (1939).

The initial calculation of structure amplitudes was made with atomic co-ordinates from the trial structure and atomic scattering factors as follows: for carbon and nitrogen suitably weighted 'average hydrocarbon' data as given by Robertson (1935) and for chlorine scattering data found to be suitable in an investigation of a related compound, *m*-tolidine hydrochloride (Hargreaves & Taylor, 1941).

Fourier syntheses

For the refining of the structure Fourier syntheses of electron density projected parallel to [100] and [001] respectively were evaluated. The values of $|F_{obs.}|$, on an arbitrary scale, were multiplied by the mean ratio $|F_{cale.}|/|F_{obs.}|$; these modified values were used with the phases (0 or π) from the calculated structure amplitudes. The electron density was evaluated at intervals of b/60, c/60; a/60, b/60, respectively, the summation being carried out with the aid of Beevers and Lipson strips.

The individual features of each projection are discussed briefly below.

(a) Projection parallel to [100]. The small changes in atomic co-ordinates suggested by the first synthesis produced changes of phase of six terms; the second

synthesis incorporated these changes. Such changes in co-ordinates as were made on the basis of the second synthesis caused no further changes of phase.

It is probable that the Fourier series is limited by the wave-length employed in this case, as with $\operatorname{Cu} K\alpha$ radiation reflexions are observed up to large values of $\sin \theta$. A third synthesis has therefore been constructed with structure amplitudes modified by an artificial temperature factor which reduces terms with $\sin \theta \sim 1$ to negligible proportions.

The co-ordinates (Table 1 (a)) deduced from this third synthesis differ slightly from those deduced from the second synthesis, but no further changes of phase are produced on recalculating the structure amplitudes. The contour diagram of the third synthesis is reproduced in Fig. 1. The following points may be noted:

(i) Atoms C_1 , C_2 , C_3 , C_4 and \tilde{N} are perfectly resolved. (ii) Although atoms C_5 , C_6 and Cl are not perfectly resolved, the lack of resolution is due in each case to the presence of the respective mirror images of these atoms and analysis of the compound peak can be made.

(iii) The contours defining atoms C_4 and N are elongated in a direction parallel to [001].

Improved agreement between observed and calculated values of F_{0kl} was obtained by adjusting the atomic scattering factors in the following way. The Robertson scattering data were modified so as to correspond to a lower temperature and each scattering factor thus obtained is multiplied by e^{-Bl^2} , where B is a constant having one value for atoms C_1 , C_2 , C_6 and Cl and first synthesis and partly from the final [100] synthesis; the x co-ordinates of atoms C₃ and N are adjusted to give the best agreement between observed and calculated F_{hk0} values. The second and third syntheses each incorporate one change of phase; no further changes occur on recalculating F_{hk0} values with co-ordinates

Fig. 1. Projection of electron density on (100).

deduced from the third synthesis. It has not been considered necessary to modify the structure amplitudes by an artificial temperature factor in this projection as there appears to be a natural termination; reflexions with $\sin \theta > 0.93$ have not been observed. The atomic co-ordinates deduced are given in Table 1 (b) and the

Table 1. Atomic co-ordinates in Ångström units

		<i>(a)</i>)	(c)			
r ¹ r ² -3,4r ⁵ r ⁶ Nr ¹	$y \\ 0.76 \\ 1.39 \\ 2.64 \\ 3.42 \\ 2.92 \\ 1.48 \\ 2.80 \\ 0.42$	$ \begin{array}{c}z\\3\cdot80\\2\cdot83\\2\cdot80\\3\cdot88\\4\cdot70\\4\cdot78\\1\cdot46\\1\cdot56\end{array} $	$\begin{array}{c} x \\ 1.77 \\ 0.90 \\ 0.63^{*} \\ 1.15 \\ 2.02 \\ 2.29 \\ 0.94^{*} \\ 0.25 \end{array}$	$ \begin{array}{c} y \\ 0.76 \\ 1.39 \\ \\ 3.00 \\ 1.48 \\ 0.42 \\ m the [100] 1 \end{array} $	x 1.77 0.90 0.63* 1.15 2.02 2.29 0.94* 0.25 projection.	$y \\ 0.76 \\ 1.39 \\ 2.64 \\ 3.42 \\ 2.92 \\ 1.48 \\ 4.80 \\ 0.42$	$\begin{array}{c}z\\3\cdot80\\2\cdot83\\2\cdot80\\3\cdot88\\4\cdot70\\4\cdot78\\3\cdot74\\1\cdot56\end{array}$	
		(a) Co	orainates fro	m me [100] F	projection.			

(b) Co-ordinates from the [001] projection.

(c) Self-consistent set of co-ordinates.

Not deduced from the contour diagram.

a larger value for atoms C_3 , C_4 , C_5 and N. Physically these adjustments may be interpreted in terms of preferential atomic vibrations parallel (in projection) to [001], the amplitudes of vibration being larger for the second group of atoms.

Calculated and observed values of F_{0kl} are given in Table 2.

(b) Projection parallel to [001]. In this projection atom C_3 of one molecule and atom N from an adjacent molecule are almost superimposed, and it is not practicable to deduce the atomic co-ordinates uniquely from the contour diagram. The co-ordinates for recalculating F_{hk0} values are derived partly from the contour diagram is reproduced in Fig. 2. The following points may be noted:

(i) Atoms C_1 , C_2 , C_5 , C_6 and Cl are perfectly resolved.

(ii) Atom C_4 is not perfectly resolved, but the x coordinate can be deduced.

(iii) The contours defining the chlorine atom are elongated in a direction parallel (in projection) to [100].

For the final calculation of structure amplitudes the scattering factors for C and N are those given by Robertson; the scattering factor for chlorine is multiplied by e^{-Bh^2} , an adjustment which can be interpreted in terms of an increased amplitude of oscillation parallel to [100].

$\sin heta$	0kl	$F_{\rm obs.}$	$F_{\rm calc.}$	$\sin \theta$	0kl	$F_{\rm obs.}$	$F_{\rm calc.}$	$\sin \theta$	0kl	$F_{\rm obs.}$	$F_{\rm calc.}$
0.000	000		520	0.541	066	16	20	0.791	0.15.3	(16)	16
0.090	011	(4)	1	0.560	0.11.1	< 1	5	0.800	0.6.10	< 4	Ϊο
0.101	020	41	49	0.579	057	19	26	0.805	0.16.0	(23)	26
0.148	002	52	$\overline{5}8$	0.585	095	< 4	4	0.807	099	< +	2
0.170	031	62	68	0.585	0.10.4	38	25	0.812	0.1.11	< 4	4
0.175	022	37	$\overline{3}4$	0.592	008	35	30	0.820	0.16.2	< 4	- 11
0.502	040	60	60	0.598	0.11.3	20	21	0.825	0.3.11	12	ĝ
0.230	013	87	84	0.600	086	< 4	4	0.835	0.14.6	(7)	12
0.250	042	22	14	0.600	028	15	6	0.840	0.13.7	(12)	ig
0.265	051	48	44	0.606	0.12.0	< 4	ā	0.843	0.8.10	< 4	6
0.270	033	24	34	0.625	0.12.2	(9)	8	0.845	0.15.5	< 4	5
0.296	004	64	76	0.625	077	(7)	11	0.849	0.12.8	< 4	ž
0.303	060	42	40	0.627	048	(7)	13	0.850	0.5.11	< 4	12
0.312	024	55	42	0.660	0.13.1	(8)	14	0.860	0.16.4	(6)	5
0.332	062	23	22	0.665	0.11.5	22	17	0.860	0.17.1	(10)	Τö
0.340	053	53	$\overline{5}6$	0.666	019	(18)	18	0.868	0.11.9	< 4	4
0•360	044	89	83	0.668	068	`< 1	4	0.885	0.17.3	(20)	23
0.360	071	59	51	0.673	0.10.6	24	Τo :	0.885	0.7.11	< 4	$\tilde{1}2$
0.375	015	22	T2	0.676	0.12.4	36	29	0.888	0.0.12	< 4	$\bar{9}$
0•400	035	27	18	0.685	039	< 4	12	0.890	0.2.12	< 4	3
0.404	080	60	37	0.690	097	< 4	2	0.895	0.10.10	< 4	Ĩ.
0.420	073	32	<u>3</u> 0	0.693	0.13.3	32	38	0.902	0.18.0	(18)	18
0.425	064	27	31	0.705	0.14.0	52	<u>อ</u> ีลี	0.908	0.4.12	< 4	ĨŠ
0.430	082	< 4	7	0.715	059	< 4	8	0.917	0.15.7	(5)	16
0.444	006	35	35	0.716	088	< 4	5	0.920	0.18.2	< 4	0
0.450	055	< 4	10	0.722	0.14.2	< 4	12 .	0.921	0.16.6	< 4	7
0.455	026	42	39	0.740	0.0.10	42	37	0.925	0.14.8	(5)	$\bar{6}$
0.460	091	22	17	0.746	0.2.10	21	17	0.929	0.9.11	< 4	2
0.490	046	45	39	0.750	0.12.6	(11)	20	0.934	0.6.12	< 4	6
0.200	084	< 4	4	0.755	079	< 4	$\overline{2}$	0.932	0.17.5	< 4	4
0.505	0.10.0	19	27	0.755	0.13.5	< 4	3	0.938	0.13.9	(4)	1
0.505	093	< 4	Ļ	0.760	0.11.7	(16)	22	0.957	0.12.10	< 4	5
0.510	075	< 4	4	0.761	0.15.1	< 4	TT (0.958	0.18.4	< 4	4
0.520	0.1.7	45	47	0.765	0.14.4	(18)	_8	0.961	0.19.1	(14)	21
0.525	0.10.2	(7)	13	0.765	0.4.10	(10)	12	0.971	0.8.12	< 4	4
0.540	037	< 4	6	0.779	0.10.8	< 4	8 :	0.982	0.11.11	< 4	5

Table 2. Observed and calculated F_{0kl}

Bracketed values of $F_{\rm obs.}$ are obtained from visually estimated intensities.

Table 3. Observed and calculated $F_{hl:0}$

$\sin\theta$	hk0	$F_{ m obs.}$	$F_{ m cale}$	$\sin \theta$	hk0	$F_{\rm obs.}$	Fcale.	$\sin \theta$	hk0	F_{obs}	$F_{\rm calc}$
0.000	000		520	0.290	2.11.0	< 5	13	0.821	810	< 5	Ē.
0.101	020	4 l	49	0.606	0.12.0	< 5	<u>5</u>	0.823	820	< 5	5
0.202	040	52	60	0.608	4.9.0	< 5	ĪĴ	0.825	6.11.0	< 5	ā
0.205	200	15	20	0.612	600	< 5	2	0.830	830	< 5	ő
0.210	210	86	83	0.616	610	26	21	0.832	2.16.0	18	
0.229	220	72	75	0.619	620	< 5	6	0.841	840	< 5	;
0.255	230	7	0	0.630	630	7	12	0.854	850	< 5	т5
0.287	240	51	51	0.637	2.12.0	< 5	9	0.856	4.15.0	< 5	Ĩ
0.303	060	37	40	0.644	640	13	10	0.859	6.12.0	< 5	ž
0.323	250	14	21	0.649	4.10.0	18	Τä	0.870	860	< 5	ĩ
0.365	260	58	50	0.660	650	18	24	0.880	2.17.0	< 5	5
0.404	080	60	57	0.680	660	14	8	0.885	870	< 5	Ĩ
0.406	270	52	49	0.686	2.13.0	28	20	0.896	6.13.0	5	ő
0.410	400	18	11	0.688	4.11.0	21	18	0.901	4.16.0	, s	Ę
0.412	410	21	$\frac{24}{24}$	0.705	0.14.0	51	55	0.905	0.18.0	19	15
0.420	420	54	53	0.705	670	18	23	0.909	880	< 5	10
0.435	430	31	35	0.728	4.12.0	32	22	0.928	2.18.0	14	10
0.450	280	28	24	0.731	680	23	16	0.932	890	< 5	10
0.455	440	40	34	0.735	2.14.0	18	19	0.933	6.14.0	< 5	3
0.479	450	8	17	0.760	690	27	39	0.947	4.17.0	< 5	5
0.495	290	< 5	3	0.771	4.13.0	19	29	0.960	8.10.0	< 5	ں ب
0.505	0.10.0	19	27	0.783	2.14.0	< 5	2	0.970	6.15.0	< 5	Ā
0.506	4.6.0	18	14	0.792	6.10.0	< 5	2	0.975	2.19.0	~ 5	2
0.539	470	23	$\overline{32}$	0.802	0.16.0	25	$2\overline{6}$	0.986	8.11.0	< 5	ĩs
0.544	2.10.0	< 5	13	0.815	4.14.0	< 5	ģ	0.992	4.18.0	< 5	10
0.571	480	< 5	5	0.820	800	< 5	10		1.1070	10	10

The calculated and observed values of F_{hk0} are given in Table 3.

(c) Comparison of the two projections. For each projection the structure amplitudes have been measured on arbitrary scales and adjusted to 'absolute' values by multiplying by a factor 1.62 (for the [100] projection) or by a factor 2.61 (for the [001] projection). Comparison of the values of F_{0k0} therefore gives an indication of the order of accuracy obtained:

From [100] projection From [001] projection	020 41 33	$040 \\ 59 \\ 52$	060 42 37	080 59 59	0,10,0 19 18
	0.12.0	0.14.0)	0.16.0	0.18.0
From [100] projection From [001] projection	0 0	$\begin{array}{c} 52 \\ 51 \end{array}$		$\begin{array}{c} 23\\ 25 \end{array}$	18 17

The y co-ordinates have been deduced from each projection for atoms C_1 , C_2 , C_5 , C_6 and Cl (Table 1). In the case of atom C_5 the value from the [100] projection has been adopted owing to the existence of the combined C_3 -N peak in the [001] projection.

Fig. 2. Projection of electron density on (001).

The self-consistent set of co-ordinates is given in Table 1 (c). The intensities of thirty reflexions of type h0l and forty-six reflexions of type hkl have been calculated and are in good agreement with the observed values (visually estimated).

Reliability factor

The value of quantity

$$R = \Sigma || F_{\text{obs.}} | - | F_{\text{cale.}} || \div \Sigma | F_{\text{obs.}} |$$

has been suggested as an index of the reliability of a structure, but the value obtained appears to depend very much on the number of reflexions considered and on the treatment given to reflexions too weak to be observed. If the latter are excluded from the summation, the values obtained for the present structure are 0.17, 0.15 for the (100), (001) projections respectively. When all calculated values are included and $|F_{\rm obs.}|$ is assumed zero for all reflexions too weak to be recorded, the respective values are 0.33 and 0.32. When

each unrecorded reflexion is assigned an $|F_{obs.}|$ value of one-half of the smallest $|F_{obs.}|$, the values obtained for R are 0.25 and 0.23 respectively.

Description of the structure

Molecular configuration. The bond lengths and bond angles are represented in Fig. 3. Each ring with its attached atoms is approximately planar and the atoms $NC_4C_1C_1.C_4.N'$ are approximately collinear. The two rings are rotated, in mutually opposite directions, through an angle of 36° (mean) from the *cis*-planar position, the angular displacements of the individual atoms being: C_2 , 36°; C_3 , $36\frac{1}{2}$ °; C_5 , $37\frac{1}{2}$ °; C_6 , $34\frac{1}{2}$ °; Cl, $35\frac{1}{2}$ °. The diphenyl link C_1-C_1 , with length 1.53 A. is, within experimental error, the standard single bond. The configuration is markedly similar to that of *m*tolidine hydrochloride (Hargreaves & Taylor, 1941). The same mean C-C distance is obtained (1.38 A.) and the same alternation of long and short bonds is observed; in the present structure the mean long bond is 1.45 A. and the mean short bond 1.30 A., compared with 1.42

Fig. 3. Bond lengths and bond angles.

and 1.34 A., respectively, in the *m*-tolidine molecule. The C-N distances in the respective structures are 1.40 and 1.39 A. (*m*-tolidine). These distances are appreciably shorter than the C-N single bond of 1.47 A. It may be noted that, quite apart from any double-bond character which may exist, comparable distances have been observed in glycine (Albrecht & Corey, 1939), diketopiperazine (Corey, 1938) and *dl*-alanine (Levy & Corey, 1941).

The bond C-Cl (1.72 A.) is not significantly different from the value 1.76 A. from Pauling's (1939, p. 154) list of covalent radii, whereas in *m*-tolidine hydrochloride the corresponding bond (C-CH₃) is reduced to 1.44 A.

Assessment of the accuracy of the bond lengths given is difficult, but some measure of the accuracy of the atomic co-ordinates can be got by comparing the y coordinates which are obtained independently from two projections. The bond lengths most accurately established are as follows. Bond C_1-C_1 , is determined almost entirely by the y co-ordinate. As the same co-ordinate is obtained for both projections this bond may well be accurate to within ± 0.02 A. It is estimated that the bonds C_1-C_2 , C_5-C_6 and C_4 -N have errors little more than this. Bonds C_4-C_5 and C_1-C_5 are somewhat less favourably determined, and a reasonable error would be ± 0.04 A. The probable error in bonds C_2-C_3 and C_3-C_4 is somewhat larger still, say ± 0.05 A.

Arrangement of the molecules in the crystal. The centres of the molecules lie on digonal axes which are parallel to [001], the mean plane of the molecule being inclined than the separation 3.36 A. between two Cl atoms in the same molecule.

I wish to thank I.C.I. Ltd. (Dyestuffs) for the supply of crystals for the investigation and for permission to publish this account. I am glad also to acknowledge my indebtedness to Dr W. H. Taylor for his valued

Fig. 4. Isometric projection of the unit cell.

at an angle of 11° to (100). The structure is racemic, the unit cell containing two right-handed and two left-handed molecules (Fig. 4).

Intermolecular distances are, with few exceptions, of normal magnitudes. In only one instance is the hydrocarbon (C-CH) separation smaller than 3.6 A.; the separation between C₄ of one molecule and C₅ of an adjacent molecule is 3.45 A. The smallest distance NH₂-Cl is 3.55 A., appearing to indicate that only van der Waals forces are exerted between these atoms.

An abnormally small interatomic distance is that between two Cl atoms in adjacent molecules (3.27 A.). This distance is considerably smaller than the van der Waals separation of 3.6 A. and is even slightly smaller advice and interest throughout the whole course of the investigation.

References

- ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221.
- ALBRECHT, G. & COREY, R. B. (1939). J. Amer. Chem. Soc. 61, 1087.
- COREY, R. B. (1938). J. Amer. Chem. Soc. 60, 598.
- HARGREAVES, A. & TAYLOR, W. H. (1941). J. Sci. Instrum. 18, 138.
- LEVY, H. A. & COREY, R. B. (1941). J. Amer. Chem. Soc. 63, 2095.
- PAULING, L. (1939). The Nature of the Chemical Bond. Cornell: University Press.
- ROBERTSON, J. M. (1935). Proc. Roy. Soc. A, 150, 110.
- ROBINSON, B. W. (1935). J. Sci. Instrum. 10, 233.